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Abstract

A multiple-grid collocation method is presented that allows exact evaluation of residuals generated by truncated trial function expansion

solutions to boundary-value problems with polynomial nonlinearities. The method is used to formulate a true, discrete analog to the

Galerkin projection applicable to the same class of problems. The numerical techniques developed are used to study the convergence

behavior of a nonlinear, reaction-diffusion problem as a function of Thiele modulus (�) and trial function truncation number (N). The

convergence problems encountered at high � values are found to result from a second, physically meaningless solution to the modeling

equations. This `spurious' solution and the true solution are involved in a saddle-node bifurcation that limits the range of � where solutions

are found for most ®nite N; the solutions appear to asymptotically approach each other as �, N!1 regardless of the discretization

method. The saddle±stable manifold of the spurious solution also de®nes the boundary of the set of initial conditions that diverge during

dynamic simulations prior to the saddle-node bifurcation; all initial conditions are found to diverge after this bifurcation point. # 1998

Elsevier Science S.A. All rights reserved.
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1. Introduction

The orthogonal collocation method [1] was developed

originally as a stable, predictable, and simple to implement

pseudospectral technique. Because of its reliability, it has

become a standard method for solving boundary-value

problems by polynomial trial function expansions [2±5].

The interior formulation of this method [1] is based on

choosing a set of trial functions f�ngN
n�1 from an orthogonal

polynomial sequence, with the discretization points com-

puted as the roots of the polynomial �N�1 next in the

sequence. In most applications, this approximates the Galer-

kin procedure, because the residual is forced to have as its

primary component the polynomial used to determine the

collocation points. However, for some linear problems

where the residual can be expressed exactly in terms of

the chosen set of trial functions, the two methods give

identical results.

In this paper, we develop a multiple-grid implementation

of this collocation method that extends to some nonlinear

problems the ability to calculate the residual exactly.

Furthermore, the precise residual calculation capabilities

of the multiple-grid collocation approach are used to modify

the discretization procedure to obtain an exact analog to the

Galerkin projection for the same class of problems. We use

these discretization techniques to study the solutions to a

nonlinear reaction±diffusion problem known to exhibit con-

vergence problems for large Thiele modulus (�) values. We

use a combination of perturbation analysis and numerical

continuation techniques to show that the problem stems

from a second, physically meaningless solution generated

during a saddle-node bifurcation at a value of � that grows

with increasing trial function truncation number N. This

spurious, steady-state concentration pro®le, however, is not

an artifact of the discretization procedure: the residual

analysis techniques developed in this paper are used to show

that it is a convergent solution to the boundary value

problem. We ®nd that the solutions asymptotically approach

each other as �, N!1 regardless of the discretization

method (cf. the parasitic solutions found in [7], which

disappeared with increasing trial function truncation num-

ber). We demonstrate that the numerical problems encoun-

tered in previous simulation studies (e.g., [5,6]) are

attributable to this spurious solution and its interaction with

the `true' solution. Further insight into the mechanisms that

lead to divergence of dynamic simulations is obtained by the

analysis of the global dynamic behavior of this system in the
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phase space of a two-point discretization of the reaction±

diffusion problem. It will be shown that prior to the saddle-

node bifurcation, the saddle-stable manifold of the spurious

solution separates initial conditions that diverge from those

that converge to the true solution. Because no N-mode

steady-state solutions exist after the bifurcation points

associated with the different N, all initial conditions will

diverge when integrated forward in time for these Thiele

modulus values.

2. The reaction±diffusion problem

We develop the multiple-grid collocation technique in

the context of computing solutions to the nonlinear

reaction±diffusion equation in a cylindrical physical

domain
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subject to boundary conditions @c�0; t�=@x � 0; c�1; t� � 1

and initial condition c�x; 0� � c0�x�. This problem can be

converted into a nonhomogeneous partial differential equa-

tion subject to homogeneous boundary conditions with the

transformation c(x,t) � u(x,t) � 1 to give
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and boundary conditions @u(0,t)/@x � 0 and u(1,t) � 0. We

represent u(x,t) by the trial function expansion

u�x; t� �
X1
n�1

bn�t��1ÿ x2��n�x2� �
X1
n�1

bn�t� n�x� (2)

which can be written in vector notation uN�x� � wb for

truncated expansions. In this notation, the vector of trial

functions is de®ned as w�x� � �1ÿ x2���1�x2�; . . . ; �N�x2��
and the corresponding mode amplitude coef®cients are

b � �b1; b2; . . . ; bN �T. By using only even powers of x,

the trial functions  n satisfy the boundary condition at

x � 0; the factor (1ÿx2) forces the trial functions to also

satisfy the boundary condition at x � 1. The polynomials �n

are constructed as the normalized Jacobi polynomials

de®ned by a sequence of 2n-th degree polynomials ortho-

normal with respect to weighted inner productR 1

0
�i�j�1ÿ x2�x dx � 0 for i 6� jR 1

0
�i�j�1ÿ x2�x dx � 1 for i � j

(3)

with �1 � 2.

3. Interior collocation

The discrete-ordinate formulation of the interior colloca-

tion method is based on de®ning the discrete transformation

array Q:

uN�1 � QN�NbN�1 with Qi;j �  j�xi�
The collocation point locations xn are determined as the

roots of �N�1�x� (the interior roots of  N�1�x��. The dis-

cretization array is de®ned as

1

x

d

dx
x

duN�1

dx
� BN�NuN�1 with B � 1

x

d

dx
x

dQ

dx

� �
Qÿ1

Therefore, Eq. (1) can be discretized to give the N ordinary

differential equations in time

dun

dt
� Bnuÿ �2�un � 1�2 n � 1; . . . ;N (4)

with Bn de®ned as the n-th row of B. This set of equations

can be represented in matrix form by de®ning the column

vector 1 as a (N � 1) vector with elements all equal to unity,

to give

du

dt
� Buÿ �2�u� 1�2 (5)

The discretized system Eq. (5) has more than one steady-

state solution; this fact has not been discussed extensively in

the literature on determining solutions to Eq. (1), but is

critical to understand the problems associated with comput-

ing steady-state solutions and dynamic simulations for large

�. Consider Fig. 1 where the two coexisting steady-state

solutions are plotted for � � 4. It is easy to visually dis-

tinguish between the `true' solution and the physically

meaningless (spurious) solution because the spurious solu-

tion crosses the c � 0 axis. To determine if this solution is an

artifact of the collocation discretization of the original

problem Eq. (1), the convergence of each solution is exam-

ined using the residual computation technique developed in

the next section. Plotting the L2 norm of each steady-state

residual as a function of N con®rms that each is a convergent

solution (see Fig. 1, right-most plot).

3.1. Residual calculations

The residual function produced by the collocation pro-

cedure is de®ned as the function obtained by substituting the

trial function expansion solution Eq. (2) into the original

problem Eq. (1) with the values of the mode amplitude

coef®cients computed from Eq. (4). Solving Eq. (4) forces

the residual to vanish at the collocation points; between the

collocation points the residual function will either be zero or

will be a function that, when decomposed in terms of the

normalized trial functions �if g1i�1 by projecting the residual

function onto each  if g1i�1, will normally have as its most

signi®cant component dN�1�N�1 with dN�1 � dN�1�t�. If

the trial function expansion Eq. (2) is truncated at N�x�, the

trial function expansion approximating the solution will

have polynomial terms of up to degree 2N and the residual

produced by Eq. (1) will contain polynomials of up to

degree 4N. Because a polynomial function containing only

terms of up to this degree can be expressed exactly by a
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combination of the ®rst M � (4N/2) � 1 functions �m, we

can use a ®ner scale of collocation points x̂m; m � 1; . . . ;M
(shown in Fig. 2) to de®ne the discrete transformation and

discretization arrays necessary to compute the mode ampli-

tude coef®cients dm associated with the trial functions �m

for the residual function R(x,t) evaluated at these points

(see Fig. 1, center plots, for the residual decomposition

results).

The x̂m are computed as the roots of �M�1. To compute the

®ne-grid residual values corresponding to a solution de®ned

on the coarse grid, we de®ne the interpolation array

ûM�1 � Q̂
M�N

bN�1 � Q̂Qÿ1u

with Q̂m;n �  n�x̂m�; n � 1; . . . ;N; and m � 1; . . . ;M.

This de®nes the transformation array Q̂Q
ÿ1

that takes the

function u(x) de®ned by the coarse-discretization grid (x)

values of un and exactly interpolates the function to the ®ne

grid. Similarly, we can generate the non-square discretiza-

tion array necessary for computing the residual by

1

x

d

dx
x

dû

dx

M�1

� B̂
M�N

uN�1 with B̂ � 1

x

d

dx
x

dQ̂

dx

" #
Qÿ1

Therefore, the residual on the ®ne grid can be computed

directly from values of un on the coarse grid by

R̂m � �Q̂Qÿ1�m
du

dt
ÿ B̂mu� �2 Q̂Qÿ1

� �
m

u� 1
ÿ �2

m � 1; . . . ;M

or

R̂ � Q̂Qÿ1 du

dt
ÿ B̂u� �2�Q̂Qÿ1u� 1�2 (6)

where �Q̂Qÿ1�m denotes the m-th row of the product Q̂Qÿ1.

3.2. The residual function and norm

A subtle but important point is that the residual function

does not necessarily vanish at the catalyst pellet outer

boundary even if the trial functions representing the solution

vanish at x � 1. Therefore, the residual function R(x,t) must

be represented in terms of the �m, not the  n. This gives the

truncated trial function expansion R�x; t� � gd. We stress

that this is the exact residual corresponding to the truncated

trial function expansion uN�x; t� solution for this problem

and similar, nonlinear problems. By de®ning the discrete

transformation array P̂ with P̂i;j � �j�x̂i� with

i; j � 1; . . . ;M; the discretized residual function can be

written as R̂ � P̂d.

The residual function decomposition mode amplitudes

are computed from d � P̂
ÿ1

R̂. Plotting these coef®cients

dm;m � 1; . . . ;M as a function of m (Fig. 1), we see that

the residual of the steady-state solution contains compo-

nents corresponding to mode numbers less than N � 1. This

demonstrates one difference between solutions obtained by

the collocation and Galerkin methods: that the collocation

solution residual is not truly orthogonal to the �n for

n � 1; . . . ;N with respect to weight function x�1ÿ x2�.
However, because the maximum magnitude mode

Fig. 1. Steady-state solutions and convergence behavior produced by the orthogonal collocation discretization technique for � � 4 and N � 4. Spurious

solution is denoted with the dashed curve.

Fig. 2. Coarse- and fine-scale spatial discretization grids.
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corresponds to �N�1 (in Fig. 1 the peak is located at m � 5),

this discretization procedure constitutes a good approxim-

ation to the Galerkin method. We also note that the residual

contains no mode components with mode number greater

than 2N � 1 (i.e., polynomials of degree greater than 4N),

which is consistent with our previous analysis of the residual

generated by this type of nonlinearity.

The square of the residual norm is computed by the inner

(dot) product jjR�x; t�jj2 � ŵ � R̂2
. The quadrature weights

used to compute the residual norm are found from

ŵM�1 � P̂
ÿ1

h iT
Z 1

x�0

gTx dx or P̂
ÿ1

h iT
Z 1

x�0

wTx dx

depending on which norm weight function is desired1. The

choice of collocation point locations guarantees that the

computed value of the residual norm is exact if the residual

function is exact. Plotting the residual norm as a function of

truncation number N shows that both solutions converge

(Fig. 1); since both solutions also satisfy the problem

boundary conditions, both are true solutions to the mathe-

matical model of the problem. Only one, however, is a true,

physical solution.

4. Solution behavior as a function of / and N

To understand the role the spurious solution plays in the

dif®culties associated with computing the true solution at

large � values and a ®xed number of discretization points N,

consider steady-state solutions to the discretized problem

Eq. (5). When � is large, the solution must be approxi-

mately u � ÿ1, otherwise the product �2�un � 1�2 would

result in numbers too large to be balanced by the remaining

terms of the discretized equation. Therefore, by using the

original reactant concentration variable c in discretized

form, c � u� 1, if � is large and if each term jcnj � 1,

we can compute an approximate solution as

cn � � 1

�

�������������������
ÿ
XN

j�1

Bn;j

vuut (7)

for the discretized equations. The conclusion of this per-

turbation analysis is that if
PN

j�1 Bn;j > 0 for any value of n,

no solutions can exist for large � and ®xed N. On the other

hand, solutions will exist if the sums of the row elements of

B are all negative numbers. For example, consider Table 1:

solutions will exist for large � for the one-point collocation

solution, but will not for N � 2 and N � 3. In fact, numerical

tests show that there are no values of N � 20 (besides N � 1)

where the sums of the row elements of B are all negative.

This property depends on the collocation point locations and

trial functions ± we can design discretization arrays B so that

solutions exist for large �, but have found that the solutions

for smaller values of � can be inaccurate.

A predictor±corrector pseudo-arclength continuation

technique was used to verify the predictions of the asymp-

totic solution Eq. (7). Results are presented in Fig. 3 where

we see that solutions do indeed exist for all values of � in the

range of this plot2 for N � 1. As one might expect, the range

of �where solutions exist for N > 1 increases with N. In fact,

it appears that doubling the number of collocation points N

more than doubles the value of � where the saddle-node

bifurcation takes place. The saddle-node bifurcation takes

place when the spurious and true solutions coalesce and

subsequently disappear (see Fig. 4 and [8]). At this point,

the determinant of the Jacobian array of the linearized

system vanishes (det(J) � 0); the nearly singular Jacobian

array can contribute to numerical dif®culties experienced

when solutions are sought in the neighborhood of the

bifurcation points. Saddle-node bifurcation point locations

were computed directly with Newton±Raphson iterations of

the discretized steady-state equations augmented with the

det(J) � 0 condition. Results are reported in Fig. 3 which

includes plots of the exact residual norms computed using

Eq. (6).

5. Discrete Galerkin projection

We can take advantage of the precise residual computa-

tions made possible by the multiple-grid technique to

Table 1

Collocation constants

N x B
P

j Bn;j

1 [0.5774] [ÿ6] [ÿ6]

2
0:3938

0:8031

� � ÿ9:9024 12:2997

9:0337 ÿ32:7643

� �
2:3973

ÿ23:7306

� �

3

0:2976

0:6399

0:8875

24 35 ÿ15:8814 19:6364 ÿ5:2812

11:1519 ÿ34:4974 29:2357

ÿ3:5406 34:5121 ÿ99:6212

24 35 ÿ1:5262

5:8902

ÿ68:6496

24 35

1The quadrature weights computed by the first method are used to

compute the residual norm and the second for computing mean

concentration values.

2We plot the reactant concentration at x � 0 in this Figure, resulting in

an asymptotic value different from that predicted by (7) which is valid

only at the collocation points. We also note that the residual norm

becomes unbounded for �!1 for the one-point collocation-discretized

system.
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compute values of un on the coarse grid that force the

residual, weighted by the function �1ÿ x2�x, to be ortho-

gonal to the ®rst N trial functions �n. This gives a true

discrete analog to the Galerkin projection when the residual

can be expressed exactly in terms of a ®nite number of trial

functions �n (cf. [3]). The motivation for developing this

numerical technique was to provide results equivalent to the

exact Galerkin projection while retaining the simplicity of

implementation of the original orthogonal collocation

method. If we de®ne the nonsquare array �P
N�M

by the ®rst

N rows of P̂
ÿ1

, i.e.,

�Pn;m � �P̂ÿ1�n;m n � 1; . . . ;N; m � 1; . . . ;M;

the ®rst n � 1; . . . ;N mode amplitude coef®cients dn of the

collocation-discretized solution residual can be computed

from

d � �P Q̂Qÿ1 du

dt
ÿ B̂u� �2�Q̂Qÿ1u� 1�2

� �
(8)

Setting these coef®cients to zero forces the residual function

to be orthogonal (in terms of inner product Eq. (3)) to the

®rst n � 1; . . . ;N trial functions �n; rearranging Eq. (8)

gives the N ordinary differential equations in time

du

dt
� �PQ̂Qÿ1
� �ÿ1�P B̂uÿ �2 Q̂Qÿ1u� 1

ÿ �2
h i

to ®nd the values of un on the coarse scale. Representative

solutions and corresponding residual functions of the true

and spurious steady-state solutions obtained with the Galer-

kin method are shown in Fig. 5. We can observe all of the

characteristics of a true Galerkin procedure in Fig. 5: the

residual is orthogonal to the ®rst N trial functions since

dm � 0, m � 1; . . . ;N; the residual mode with greatest

magnitude is dN�1�N�1; and the residual contains no modal

Fig. 3. Continuation results for the collocation discretization method showing the reactant concentration at the catalyst pellet center (left) and both solution

residual norms (right) as a function of �. Dashed curves represent spurious solutions and solid curves indicate true solutions. Saddle-node bifurcation point

locations are �!1 for N � 1, � � 21.8634 for N � 2, � � 49.5011 for N � 4, � � 122.7844 for N � 8, and � � 318.2965 for N � 16.

Fig. 4. A magnified view of the solutions in the neighborhood of the

saddle-node bifurcation point for the case N � 2.
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contribution from modes m � 2N � 1, which is an observ-

ation consistent with the assumptions upon which the

residual calculation techniques are based (see Section 3.1).

We note that because the solution procedure uses the values

of the residual evaluated on the ®ne grid, the accuracy

assessment of a solution essentially comes at no additional

computational cost when using this numerical technique.

Comparing the Galerkin results to collocation in terms of

both convergence behavior and the range of � where solu-

tions exist, we ®nd the differences to be minor for this

problem, giving further evidence to support the conclusion

that the spurious solution is not an artifact of the discretiz-

ation procedure. The Galerkin procedure appears to give

slightly more accurate results for larger values of N; one

interesting difference, however, is that the single mode

Galerkin-discretized problem has no solutions for � > 7.03.

6. Dynamic behavior

Linearizing both the Galerkin and collocation-discretized

systems at each steady-state solution and computing the

eigenvalues and associated eigenfunctions, we ®nd that the

physically relevant solution is a stable node and that the

spurious solution has saddle-type stability, with one

unstable mode. Therefore, the spurious solution will, for

all practical purposes, never be directly observed during

dynamic simulations when using the discretized equations.

However, because the saddle-type solution's stable mani-

fold Ws de®nes the boundary separating the basin of attrac-

tion of the physically relevant solution from the initial

conditions that diverge to in®nity, the spurious solution is

actually responsible for determining the global stability

characteristics of the dynamic simulations (see Fig. 6). In

these phase portraits, the saddle-stable manifold Ws is

approximated by the curves obtained from integrating the

discretized equations in reverse time, starting from initial

conditions located near and to each side of the spurious

solution ®xed point along the saddle-stable eigenvector [9].

For N � 2, the spurious and physically relevant solutions

meet during a saddle-node bifurcation at � � �sn �
21:8634. In the phase portraits shown in Fig. 6, we see that

the solutions approach each other as � is increased from

� � 4 to � � 14. This results in a growing portion of phase

space consisting of those initial conditions that diverge to

negative in®nity, a region that increases in size until it

suddenly ®lls the entire phase space after the saddle-node

bifurcation. The result is that all N-mode simulations

diverge for the values of � > �sn corresponding to each

N, regardless of the initial conditions. This explains the

dif®culties associated with numerical simulations of tran-

sient behavior for large �; the continuation results presented

in Fig. 3 demonstrate the relationship between the number

of collocation points used and the values of � after which

divergence of the dynamic simulations is guaranteed. In

Fig. 7, we see the time-history of the concentration values at

the collocation points for a value of � > �sn; we see the

potentially deceptive behavior exhibited by the simulation

(which would occur when using any integrator): the slow

drift in the neighborhood where the steady-state solution

existed for � < �sn, followed by the quick divergence to

in®nity.

7. Conclusions

In this paper, we developed a numerical technique that

allows exact computation of the error generated by colloca-

tion discretization techniques applied to a nonlinear bound-

ary-value problem. These capabilities were used to analyze

Fig. 5. Steady-state solutions and convergence behavior produced by the Galerkin discretization technique for � � 4 and N � 4. Spurious solution is denoted

with the dashed curve. Note that the residual does not necessarily vanish at the collocation point locations (marked in the residual function plot).
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a nonlinear reaction-diffusion problem known to exhibit

convergence problems. Numerical bifurcation analysis tech-

niques were used to study the role a second, physically

meaningless solution played in both the dynamic and

steady-state solution behavior. An interesting conclusion

of this study is that while the second solution has no physical

meaning, it plays a central role in the solution dynamics and

convergence of methods designed to determine the true,

steady-state solution, and so cannot be dismissed in this

context. The precise residual calculations made possible by

the multiple±grid method were used to develop a discrete

form of the Galerkin projection for a class of nonlinear

systems, a goal much sought after in previous collocation

studies (see, e.g., [3]). We are currently studying the applic-

ability of this method to implementing other, more advanced

weighted residual methods, such as the least squares projec-

tion and even nonlinear Galerkin methods [10±12].

In this paper, we consider a problem with a quadratic

nonlinearity. Increasing the number of ®ne-grid discretiz-

ation points allows analysis of higher-degree nonlinearities;

for example, a boundary value problem with a polynomial

nonlinearity of degree q would generally require qN � 1

®ne-scale discretization points to exactly evaluate the resi-

dual corresponding to a trial function expansion composed

of polynomials with maximum degree N. Numerical tech-

niques are available for accurately performing computations

based on high-degree (M > 500) polynomial discretizations

[13]. Furthermore, preliminary numerical studies of systems

with exponential and other `harder' nonlinearities indicate

that for these problems, where the residual still cannot be

exactly determined, the new method more closely approx-

imates the Galerkin procedure than the original, orthogonal

collocation method. We believe the numerical methods

Fig. 6. Phase planes for the collocation- and Galerkin-discretized problem solutions with N � 2 illustrating how the true (right-most) and spurious (left-most)

solutions approach each other with increasing �. The axes denote concentration values at the two collocation points. The basin of attraction of the true

solution and the set of initial conditions that lead to divergence of the dynamic solution are separated by the saddle-stable manifold WS of the spurious

solution. Thicker arrows denote eigenvectors associated with the linearized solutions ± the arrow lengths indicate the eigenvalue magnitudes.

Fig. 7. Simulation results illustrating the divergence of initial conditions

corresponding to the case N � 2 and � � 22. The simulation diverges

regardless of the integration method used.
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developed in this paper are a ®rst step towards developing

more powerful tools applicable to the analysis of conver-

gence and simulation dif®culties for a wide range of more

detailed modeling and simulation problems.
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